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Summary. The R-matrix theory is used to discuss algorithms for the calculation 
of scattering amplitudes for chemical reactions. A formulation of the micro- 
scopic equations in terms of hyperspherical coordinates and the use of the 
hyperradius as the reaction coordinate requires a detailed specification of the 
multitude of available channels and particular emphasis is placed here on the 
treatment of the rotational manifold by means of a generator coordinate 
description. Examples are presented for atom-diatom systems 
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1. Introduction 

Representations are developed here of the asymptotic channel states for reactive 
molecular collisions. Their aim is to simplify the treatment of a great number of 
partial waves by means of a localized description of the parameter space of the 
three-dimensional rotation group. Sparse matrix techniques offer efficient al- 
gorithms which compensate the loss of the partial wave block structure of the 
problem. Some suggestions for basis sets are presented and their efficiency is 
discussed. 

Reaction rate theory at the microscopic level is developing rapidly with 
the help of new conceptual tools and, particularly, new computing equip- 
ment. Detailed determination of partial cross sections for reacting atom- 
diatom systems is now possible with the use of computer codes from several 
laboratories [1-8]. These capabilities can be expected to be extended to four- 
particle systems [9, 10]. The post-computing processing of the data will become 
an ever more demanding part of the work due to the great proliferation of 
channels and the incorporation of weighted averaging procedures while main- 
taining certain degrees of state specificity enters as a significant element in any 
study. 

Miller [11] formulated a theory for rate constants in terms of the flux-flux 
autocorrelation function and the appropriate statistical distribution functions for 
a system where thermal equilibrium is maintained. More detailed, but not totally 
resolved, transition probabilities are being obtained in experimental laboratories 
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and it is a matter of concern to the theorist to find the most economic way to 
obtain as accurate results as possible with a prescribed resolution. 

The motivation for the study presented here is that neither the conventional 
partial wave analysis [12] nor Born-type approximations [13] may be the optimal 
way towards the calculation of scattering amplitudes. Remarkable results by 
Regge [14] have demonstrated that the scattering amplitude may have an 
analytical extension to complex angular momentum which admits a simple 
representation in terms of a few residues and poles. Similarly there has been a 
great development in the theory of resonances from the study of dilatation 
transformations or complex scaling [15]. These developments point towards 
possibilities also in the numerical applications where "unconventional" basis sets 
may offer advantages. The long-range potentials which are important in low- 
energy molecular collisions give notoriously long series in partial wave expan- 
sions even though they may show relatively smooth differential cross sections. 

A framework for the detailed classification of channels in a multidimensional 
scattering problem in quantum mechanics is offered in the next section and the 
hyperspherical picture is entered. Section 3 illustrates an alternative to the partial 
wave picture for potential scattering and Sect. 4 details a possible formulation of 
atom-diatom systems. Algorithmic considerations are given in the fifth part of 
the paper and a short discussion concludes this account. 

2. The R-matrix on the hypersphere 

Quantum mechanics is formulated, for a system of N particles in the time- 
independent, non-relativistic domain, as a variational problem. Thus we have a 
set of masses and configuration space coordinates: 

{mj, Rj;j  = 1 ,2 , . . .  N} 
and an interaction potential: 

W(RI, R2 . . . .  RN) 
which is assumed to be translationally and rotationally invariant. The standard 
transformation to center-of-gravity and internal coordinates is expressed through 
an orthogonal matrix as [16]: 

vj : ~" Rk ~ Oej, Oku : x/~-k/M (1) 
k 

The total mass M will be the effective mass in the kinetic energy term and only 
the N - 1 first transformed coordinates enter the potential. Accordingly we look 
for functions in a 3 N -  3 dimensional space: 

X = (~'1, r l  . . . .  r N _ l )  , X e R  3N-3 ( 2 )  

Wigner-Eisenbud R-matrix theory [17] considers a subspace V with a suitably 
smooth boundary S 18]. The functional: 

{ [ E  - W(x)ll '(x)12 - IV  (x)12) 
t ~  

J(~, eb) = + i dx[~*(x)TJ(x) + kU*(x)~(x)] (3) 

-- f dx~*(x) f dxtRs(x, xt)CI)(x t) 
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is stationary for solutions of  the Schr6dinger equation with boundary conditions 
expressed through an integral kernel representing the R-matrix on the boundary 
S. The units of mass, length, and action are chosen so as to eliminate Planck's 
constant and the mass parameter from the expression. 

Approximations to the integral kernel R(x, x') on the boundary S can be 
constructed by means of  matrix manipulations when a finite basis of functions 
on V is used to expand the wave function ~: 

~P(x) = ~, uj (x)cj (4) 

The functional (3) is stationary and equals zero when: 

for 

and 

~(x, x') = 

R~(x, x') = A(x, x ' ) /3 

A l l  A12 . . . A1M 

A21 A22 • . . A 2 M  

AM1 AM2 • • • A~M 
u,(x) u2(x) "'" u~(x) 

A = 

All A12 " " " A I M  

A21 A22 " " " A2M 
; • . . .  • 

AMI AM2 " "  AMM 

u T (x') 
u*(x') 

u*(x ' )  
0 

(5) 

(6) 

(7) 

with 

Ajk = .I dx {[E - W(x)]u~ (x)uk(x) - Vu~ (x) . Vu~(x)} (8) 

More details are given in a recent publication [19]. 
Originally [17], it was assumed that the R-matrix should be calculated for 

the strong interaction domain and that its property of relating the amplitude and 
normal derivative at the boundary: 

~(x) = f dx'Rs(x, x')g~s(x ') (9) 

be used to relate the amplitudes of the incoming and outgoing states. Alterna- 
tively, these states may be included in the basis and the boundary extended to the 
asymptotic region whereupon the scattering matrix may be extracted directly as 
Miller has shown recently [2, 20]. The main problem is in any case to cover the 
interaction region with a reasonable set of functions. The integral kernel is 
separable with the rank less than or equal to the number of  basis functions M in 
the approximation and the question we will address in the following is whether 
the partial wave form can be replaced by another expansion with properties that 
are useful for the inversion of  the matrix A. 
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The hyperspherical coordinate representation offers 
where the domain V and its boundary is given by: 

V: {x; Ix I < Q}, S: {x; Ixl = Q} 

a convenient picture 

(1o) 

for a fixed value Q of the hyperradius. There remains to find an expedient 
characterization of the subspaces of S. 

3. Potential scattering 

Two-particle problems reduce to a situation where the integral kernel R(x,  x ')  
connects two points on a sphere in three dimensions and the conventional partial 
analysis results in a diagonal representation when a basis of solid harmonics [21] 
is used and the potential is a function only of the hypperadius: 

{ Y~.,(x); O <~ lm[ <. l <~ L }, W(x) = w(Ix l )  (11) 

We assume that the units are chosen such that the hyperradius for the boundary 
equals unity so that the basis is orthonormal on S. 

An integral kernel for the projection operator on the basis can be found in 
closed form [22]: 

L m = l  

dL (x, x') = Z Z Y,m (X) r,*m (X') 
I=O m= - I  

L + 1 PL+,(1) PL(1) 
- 4 ~ l ~ t )  PL+,(t)  PL(t) 

t ~---- XIXYl ~- X2XP2 "3i- X3Xt3 (12) 

and it is then clear that it should be possible to span the same space by means 
of a localized basis associated with points on the sphere: 

{dL(x, aj); [ajl = 1, j  = 1, 2 . . . .  (L  + 1) 2} (13) 

if the points are chosen judiciously. This basis is nonorthogonal with the metric 
matrix: 

{dL(aj, ak)} 

and will give a point representation of the R-matrix kernel. 
The basis (13) is of the kind considered in the discrete variable representa- 

tion [23] but requires global integration techniques and offers no simple schemes 
for the selection of points [24]. 

A simpler basis obtains from a finite element discretization of the sphere. 
The set of points {aj. } define a mesh of spherical triangles which may be mapped 
on a standard planar triangle. Baricentric coordinates for the standard triangle 
are defined from the solid angles of the spherical triangles. We denote the 
vertices of a spherical triangle as: 

(a, b ,e)  = S (14) 
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and its solid angle e is obtained from the formula 

[a, b, c[ (15) 
tan(e/2) - 1 + b .  c + c .  a + a -  b 

where triple product of  the three vectors is used. It will generally be assumed that 
the order of  the vectors and their directions are such that the numerator and 
denominator both are positive so that the solid angle is positive and less than a 
quarter of  the total space. The baricentric coordinate related to vertex a is given 
implicitly by the expression: 

Ix, b, cI (16) 
tan[e2~ (x) /2] = 1 + b.  c + c .  x + x .  b 

and similar forms for the two additional coordinates. It is seen that small 
e-values give the conventional results for a planar triangle. 

The Jacobian for the transformation is readily worked out and the integra- 
tion formula for the subset of S where all baricentric coordinates are positive, 
that is the interior of the triangle, is: 

d2a d2b dx- flx, V2a,VJLb [ (17) 

Numerical cubature is conventionally used and high order rules are available 
[25]. An advantage in the finite element method is that basis functions are 
associated with certain nodal points in the set and that several schemes define 
functions only at vertices of the mesh. Only nodal points which occur together 
in at least one triangle give matrix elements for the associated functions which 
may be different from zero. 

The considerations of  a sphere in three dimension are concluded by an 
example of  the matrix structure for a triangularization with icosahedral symme- 
try, 60 spherical triangles, and 32 vertices. A set of  functions is defined at each 
vertex and the matrix A in the R-matrix formula will then have a block structure 
as indicated (see Fig. 1). A lower triangular profile form demonstrates that this 
particular arrangement of the nodes gives a moderate band width which permits 
considerable savings in storage and manipulation when equation systems should 
be solved. 
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mm mm mmmmmmmmmmmmmmmmmmmmmm 
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Fig. 1. Matrix pattern for a discretization of the unit 
three-sphere with 32 nodes and 60 spherical triangles 
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4. Three-particle systems 

Wigner rotation matrices are the standard basis functions for representing the 
orientation of few-particle systems and nearly rigid structures. The associated 
projection kernel is most conveniently expressed in terms of the Euler-Rodrigues 
parameters [21, p. 18] which associate elements of the three-dimensional rotation 
group with points on the unit sphere in four dimensions. There seems to be no 
transformation in the literature that provides a direct route from the cartesian 
coordinates in six space to a form suitable for the finite element method on the 
hypersphere. 

A formulation is given here which maps a subset of the unit sphere in six 
dimensions onto a direct product space of a unit circular disc and a standard 
tetrahedron. The circular disc has been used effectively for low angular momen- 
tum problems in connection with a generator coordinate formulation for the 
angular parts [26]. 

The basis parametrization of R 6 is the same as used previously [27]: 

x = ( r l ,  r 2 )  = Ixl(el cos Z cos 0 - e2 sin Z sin 0, el cos )~ sin 0 +e2 sin )~ cos 0) 

(18) 

and the concern will here be concentrated on the representation of the unit 
vectors e I and e 2 in terms of Euler-Rodrigues parameters and the subsequent 
discretization through a subdivision of  the unit sphere in four dimensions into 
simplexes. 

We consider unit vectors in four-space and choose two equivalent expres- 
sions: 

(~ ~--- (0~0, 0~1, 0C2, (Z3) = (COS (~, a sin a), la[ = 1 (19) 

Two orthogonal unit vectors in three-space can then be formed [21, p. 19]: 

(ea, e2) 2 2 2 = (~o + ~1 - ~2 - c~, 2cq~ 2 q- 2C~o~3, 2~1c~ 3 - 2~oC~2, 

2 2 2e2c~3 + 2eoel) (20) 2 ~ 1 ~  2 - -  2ct0e3, eg - e~ + e2 - c%, 

and we proceed to examine the nature of the basis functions we wish to find. The 
Wigner rotation matrices are homogeneous polynomials of the Euler-Rodrigues 
parameters and they have the degree 2J  where we need only integer values of the 
angular momentum quantum number J. It is clear that the same function space 
may be represented as polynomials of the scalar products: 

b "  e l ,  b "  e2, c - e l ,  c "  e2, d" e l ,  d "  e 2 (21) 

provided the three vectors b, c, and d are linearly independent. This was used in 
a generator coordinate formulation [28]. Since there are three independent 
parameters in the form of Eq. (20) only three combinations of  the scalar 
products are needed in order to solve for the basis vectors and then for the 
Euler-Rodrigues parameters [21, p. 19]. 

A particular choice of parameters is introduced in a mapping onto the unit 
sphere in four dimensions. Thus we define: 

b "  (e  I COS fl q- e2 sin fl) - e b ,  Ibl = 1 (22) 

and similar expressions for c and d. The additional parameters fl, 7, and 6 serve 
to define four-vectors of the form of Eq. (19). An explicit inversion of Eq. (22) 
and its analogs is an exercise in matrix inversions which will not be given here 
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since there is no use for it. A different inversion relates to an expression for the 
vector c~ in terms of/~, ~, and ~ A fourth vector may be constructed as the 
orthogonal complement to these three. This construction is conveniently replaced 
by the definition of an additional vector in four-space, ~ = (cos (p, f s i n  q)), 
which is linearly independent to the others. Baricentric coordinates may again be 
defined in terms of the measure of the "volume" of the hyperspherical tetrahe- 
dra. There seems to be no expression available for this quantity in terms of 
elementary functions but quite accurate approximations are readily developed 
for "small" simplexes. 

An analogous development is based on the tetrahedral volume in R 4 denoted 
as: 

flo ~'o bo *ol 

T(,ff, B, q,, I ~2 2?2 ~2 (}92 

f13 73 b3 {03 

(23) 

and the corresponding hyperspherical volume: 

~, if, (o) = fr d~ (24) O(ff, 

where the set F is defined as all unit vectors in four-space for which the 
tetrahedral volumes T(~, ~, g, (o), T(ff, ~, S, (o), T(ff, ~, ~, (o), and T(ff, ~, ~, ~) all 
are positive. The baricentric coordinates are thus: 

"~b = O(a, 7, S, @)/O(¢, 7, b, @) (25) 

and they provide a suitable vehicle for the use of numerical integration rules over 
a standard tetrahedron [29]. Polynomials or other simple functions of the 
baricentric coordinates can be used to represent the wave function locally. The 
evaluation of matrix elements involves the calculation of e-coordinates for the 
appropriate 2-values as well as the six-space gradients V2. Expressions for the 
gradients are structurally simple but involve the solution of a system of seven 
equations for the four gradients V2. This is most efficiently done by numerical 
matrix inversion since no compact analytical form is immediately available. 

The previous development demonstrates a feasible way towards a discretiza- 
tion of the space relating to the rotational degrees of freedom for a three-particle 
system. Earlier it has been shown that the remaining two hyperangles, )~ and 0, 
relate to points on the unit circular disc [27, 28] and an appropriate triangu- 
larization is easily achieved there. The intricacies of inversion symmetry and the 
restriction to the upper half of the unit four-sphere will be dealt with in another 
context. 

Organization of the distinct simplexes and their vertices in a three-dimen- 
sional structure such as the one discussed above becomes an important issue for 
achieving an optimal matrix structure. The unit four-sphere can be mapped on 
the solid three-sphere by disregarding e0 and a more easily studied spatial 
structure with its connections helps the matter. Thus we may consider as a simple 
discretization the previously devised dodecahedron together with an inscribed 
icosahedron and its center as defining 45 nodes and 100 tetrahedra. An example 
of a connection matrix is: 
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mmmmnmmmmmmnnmmmmmlmmmmmmmmmmmmumml 
mm • • mmm| mn mmmmmnmmumnmmummmmulmmmul 

• mm • mm mmm mm mmmmmmmmmmmmmmmmmmmmmmmn 
mm • • mmmm mm mm mmmmmmmmmmmmmmmmmmmmmmm 
• mm mm mmmm mmmmmmmmmmmmmmmmmmmnmmmmmmmmm 
mm mm NN mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn 

m m m)nmn mmm mmmmmmmmmmmmmmmmmmmmmmmmmmmlmm 
mmmm mmm • mmmmmmmmmmmmmmmmmmmmm 

mm • • mmmmmm • • mmmmmmmmmmmmmmmmmmmm 
• mm mmm mmmmm mm mmmmmmmmmmmmmmmmmm| 
m mm mm mm mmmm mm mmm mm mm mmmmmmmmmmmmmw 
m mmm mm mm mmm mm mmmm mm mm mmmmmmmmmmmmmm 
mm mm mm mm mmmm mm mmm mm mum mmmmmmmmmmmmm 
mm mmm mm mum mm mm mmmm mm mmm mmmmmmmmmmmm 
mmm mm mm mmm mmm mm mmm mm mmmm mmmmmmmmmmm 
mmm nm mm mmmm mm NN • mm mmmmmmm mmmmmmmmmm 
m mmmmmmmm mmmm mmmmmmmmmmmm mmmmmmmmmmmmm| 
mm mmmmmmmmm mmm mmmmmmmmmmmmm mmmmmmmmmmmm 
mmm mmmmmmmmmm mm mmmmmmmnmmmmmm mmmmmmummm 
| mmmmm m mmmm mm mm mmmm mmmm mmmmmmmm| 
mm mmmmm mm mmm mm • • mmnmm mum mmmmmmml 
mum mmm • mmmm mm mm • mmmmmmm mm mmmmmmm 
mmmmmmm mmmmmmmmm mmmmmmmmm mmmmmmm 
mmmmmmm mm mmmm mmm m m mm mm mmmm • mum mmm 
mmmmmmmm nm mmmmmm • mm mm mmm mmmmm mm 
|mmmmmmmm mmm mmmmm mm mm nmm mm mmmmm m 
mmmmmmmmmm mmmm mmmmmmm mm mm mmmm mmmmmm mmm 
mmmmmmmmmmm mmmmmmmmmmm mm mm mmmmmmmmmm mu 
mmmmmmmmmmmmm mmmmmmmmmm mm mmm mmmmmmmmm m 
mmmmmmmmmm mmmmm mm mmm mm mm mmmm mm mm mm! 
mmmmmmmmmmm mmmm mm mmmm mm • mmmm mm mum nm 
mmmmmmmmmmmm mmmm mm mmm mm mmm mmm mm mm ml 
mmmmmmmmmmmmm mmm mm mmmm mm mm mmm mm mmN m 
mmmmmmmmmmmmmm mum mm mmm mm mmmm mm mm mu m 
mmmmmmmmmmmmmmm mm mm • mm mmmmmm mm m m mmm|mmmn 
mmmmmmmmmmmmmmmmmmm mm mmmm mmmm 
mmmmmmmmmmmmmmmmmmmm • • mmmmm mm 
mmmmmmmmmmmmmmmmmmmmm • mmmmmmm mm • 
mmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmm mm mm • 
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmm mm mm 
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mm nm m 
mmmmmmmmmmmmmmmmmmmmmmm mm mm mmmm • • mm 
mmnmmummmmmmmmmmmmmmmmmm mm nm mmm • mm • 
mmmmmmmmmmmmmmmmmmmmmmmmm mm mum mm • mm 
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 

Fig. 2. Matrix pattern for a discretization 
of the unit four-sphere (or the solid 
three-sphere) with 45 nodes and 100 
tetrahedra 

which ends the present analysis. 

5. Matrix structures and algorithms 

The basis functions for a full finite element method approach to the R-matrix as 
conceived above would be direct product functions for the rotational, the 

hyperradial, and the internal hyperangular or shape coordinates. A sparse matrix 
will result with a block structure corresponding to each set of functions. The 
one-dimensional, hyperradial block structure can readily be arranged in a block 
tri-diagonal form, while a more scattered structure can be expected for higher 
dimensions where the connectivity in a lattice of nodal points becomes more 
complex. Algorithms for the determination of optimal numbering are available 
but there may be reasons originating in the physical problem at hand to design 
particular structures. 

It has been common practice in the hyperspherical formulation to determine 
a suitable angular basis, admirably accomplished by Launay [8] and by Kupper- 
mann [1], and to propagate the total wave function solution from small 
hyperradii towards the asymptotic region. This is equivalent to a finite element 
formulation with the radial functions as determining the coarse structure of the 
matrix A. An alternative solution procedure of the same problem has been used 
effectively [30] to propagate the solutions from the asymptotic region towards a 
hyperradius which effectively terminates the solution. Both methods involve an 
intermediate truncation of an angular basis to a smaller and more manageable 
one by means of a diagonalization to adiabatic surface functions. This is a time 
consuming step in the process. 

Three-particle problems require a detailed description of the internal ro- 
vibrational states for bound two-particle clusters in the asymptotic region and 
consequently a large basis. This becomes a concern when the total angular 
momentum is large. It appears that the description of the radial factor of the 
wave function can be well described by relatively few basis functions for a given 
direction in hyperspace and that it is advantageous to permute the order in 



Propagation in hyperspherical coordinates 279 

which to arrange the matrix computation. Preliminary results have shown that 
savings in computer time result from this simple rearrangement [31]. 

Additional benefits are derived from the fact that a large number of the 
hyperangular channels are closed even at moderately large hyperradii and that 
consequently several nodes may be shut out totally and that others require only 
few matrix elements. Similar considerations apply towards a truncation of the 
space for the total angular momentum treatment. Launay [8] has shown how the 
basis of Wigner functions can be reduced and the treatment by Parker and Pack 
[6] serves a similar purpose. The finite element basis for the angular parts offers 
an alternative. All diagonal blocks for a given node on the four-sphere will be 
identical since the potential is assumed to be invariant under rotations. Thus it 
will be advantageous to reduce such blocks to a diagonal form and to truncate 
the basis for shape and size variables. This development is under way. 

The various orders of treatment are illustrated in Figs. 3 and 4. The first one 
depicts a reduction of the angular space to surface functions on the different 
hyperspheres which is followed by a radial propagation. The alternative sug- 
gested here is that the "breeding mode" motion described by the hyperradius is 
adapted to the particular shape specified by the internal hyperangles. This should 
then be followed by the construction of a suitable basis for a fixed orientation of 
the system. The final step relates to the different orientations and the R-matrix 
describes the propagation of the system from one shape and direction to all other 
shapes and directions admitted by the basis set employed. It is here that we see 
the effect of a limited resolution in the angular states and only the practice will 
show whether the "smudging" of the pure angular momentum states will be 

II 

Fig. 3. "Propagation" structure 
adapted to dealing with the 
hyperradial dimension 



280 J. Linderberg 

II 

Fig. 4. Matrix structure adapted to 
dealing with the hyperradial 
dimension in the innermost part of 
the algorithm 

detrimental to the detailed analysis of differential cross sections, resonances and 
other features. 

Matrix structures of the kind exhibited here indicate by themselves the 
possibilities for concurrent processing. Nodal points couple only to neighbors 
and matrix elements for one point requires little information. Information can be 
generated independently by massive parallelization. Basis set truncation proce- 
dures require matrix manipulations relating subsets of nodal points but different 
subsets are dealt with separately and may be subjected to concurrent processing. 
The final matrix inversion or linear system solving deals with large structures 
where block methods apply which admit some concurrency in the processing. 
Iterative methods such as relaxation might come into play here since it allows a 
considerable degree of parallelization. 

6. Remarks 

Systems with more than three particles give greater complexities and for molecu- 
lar systems with three atoms there is often a need of going beyond the 
Born-Oppenheimer formulation and to include some electronic degrees of 
freedom. Two elements of the preceding analysis would seem to apply also in 
these cases. The total angular momentum treatment may be simplified through 
the use of a discrete representation and the "breeding mode" will be possible to 
consider in a simple basis. Detailed descriptions of the possibilities for asymp- 
totic states will probably require sophisticated management of the possibilities 
for basis functions where localization will be an important element [16]. 
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